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In flow theory the "step” nmiethod [1]is generally used to solve problems-of complex loading. The loading process
is divided into steps, within which the differential relations are replaced by finite -diffetence relations.

Below, a method, completely analogons to the method of clastic solutions in the theory of small elasto-plastic de-
formations [2], is proposed for the ‘solution of problems in flow theory [1], on the assumption that there is no relaxation
of load at any point in the hody.

Consider a body made of an incompressible marerial obeying the law
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The following notation will be used: G is the modulus of rigidity, §jj is the stress deviator, &jj is the deformation
tensor, and T is the stress intensiry:
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The function F(T) can, for example, be found from a simple tensile rest and, hecause it is determined only for
positive T, it can always be represented in the form
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For simple tension we get
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Let the surface Fj and mass Vi forces vary with increase in the load parameter X (which may be time) in such a way
that there is no relaxation of load at any point in the body (dT - Oiand Fj and V; can be written in the form
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the coordinates only).

where Fi are functions of the coordinates only (henceforth all superscripted quantities will be funections of

Since the relation berween the stresses and strains is everywhere described by the single analytic relation (1), it is
only natural to seek the solution of the problem for the stresses in the form
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The hydrostatic pressure o is given by the relation
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Hence the deviator
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The following series is obtained for F(T):
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Clearly, x L ls defined in terms of Si'( ) with k < n. Substituting equations (7) and (10) in equation (1) and then
integraring, taking into account the zero initial conditions, we get:
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This can be represented in the form
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We shall introduce the new tensors
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i.e., the tensors & and % are linked by Hooke's Law for an incompressible material.

In the new notation Eq. (12) assumes the form
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By virtue of the fact that the compatibility equations must be fulfilled for any value of A, they must be fulfilled
for any Eij(k)* . Analogously, the equilibrium equations must be fulfilled for any oij(k)
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Introducing O o from Eq. (14) we get:
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Then at thesurface of the body we have:
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where lj are the direction cosines of the exterior normal, Introducing Eq. (14), we get:
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Clearly, it is necessary to solve the elasticity problem for the tensors i i

mass forces
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respectively, Note that, by virtue of the realizability of equations (18) and (20), for any cij(m)
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As it is easy to see, the tensors N, '(k ) are found in terms of solutions with an index less than k. Hence, the method
of successive determination of o, (X)” and si~(k ¥, and hence of o {K), is possible. Since Nl'(l) = Njj@) =0, for
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we have a problem of elasticity with F, and V(k) Vi (k) We then find

Nj ‘(3) 1/3 X293 () ang determme 9%; NON and &; (3), solving the elast1c1ty problem for the external forces given by
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Clearly, Nij( is expressed in terms of an elastic solution with an index m—2 or lower.

Hence, the problem of complex loading reduces to the successive solution of elasticity problems with cerain fic-
titious external forces, As usual, the computations are carried on until the difference between the internal fields for two
successive elastic problems is sufficiently small. Clearly, in contradistinction to the step method, it is not necessary to
repeat the entire computation to refine the solution.

In practical computations, it is possible to limit series (3) to one or two terms, if we take into consideration the
scatter of experimental data for determining the function F(T). Retaining only one term gives an approximation to the
curve for simple tension in the form of a cubic parabola. Then X, = nap, and the computations are much simplified.
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